An Equivalence Between Sparse Approximation and Support Vector Machines1
نویسنده
چکیده
This paper shows a relationship between two different approximation techniques: the Support Vector Machines (SVM), proposed by V. Vapnik (1995), and a sparse approximation scheme that resembles the Basis Pursuit De-Noising algorithm (Chen, 1995; Chen, Donoho and Saunders, 1995). SVM is a technique which can be derived from the Structural Risk Minimization Principle (Vapnik, 1982) and can be used to estimate the parameters of several different approximation schemes, including Radial Basis Functions, algebraic/trigonometric polynomials, B-splines, and some forms of Multilayer Perceptrons. Basis Pursuit De-Noising is a sparse approximation technique, in which a function is reconstructed by using a small number of basis functions chosen from a large set (the dictionary). We show that, if the data are noiseless, the modified version of Basis Pursuit De-Noising proposed in this paper is equivalent to SVM in the following sense: if applied to the same data set the two techniques give the same solution, which is obtained by solving the same quadratic programming problem. In the appendix we also present a derivation of the SVM technique in the framework of regularization theory, rather than statistical learning theory, establishing a connection between SVM, sparse approximation and regularization theory.
منابع مشابه
An Equivalence Between Sparse
This paper shows a relationship between two diierent approximation techniques: the Support Vector Machines (SVM), proposed by V. Vapnik (1995), and a sparse approximation scheme that resembles the Basis Pursuit De-Noising algorithm (Chen, 1995; Chen, Donoho and Saunders, 1995). SVM is a technique which can be derived from the Structural Risk Minimization Principle (Vapnik, 1982) and can be used...
متن کاملAn Equivalence Between Sparse Approximation And Support Vector Machines
This article shows a relationship between two different approximation techniques: the support vector machines (SVM), proposed by V. Vapnik (1995) and a sparse approximation scheme that resembles the basis pursuit denoising algorithm (Chen, 1995; Chen, Donoho, and Saunders, 1995). SVM is a technique that can be derived from the structural risk minimization principle (Vapnik, 1982) and can be use...
متن کاملSparsity in the Context of Support Vector Machines
This paper surveys the significance of sparsity for the Support Vector Machine (SVM) method. The SVM method is a machine learning technique with a wide range of applications, e.g. medical diagnosis, pattern recognition, and clustering. The method is fairly recent; Vapnik is credited with originating it in 1979. We present a general introduction to SVMs in the context of data classification and ...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998